NU - AutoAquaponics: Spring 2024 Update

Added by Kyan Shlipak 8 days ago

AutoAquaponics is a project that started during the remote spring quarter in 2020, and our goal is to build and maintain a fully automated aquaponic system in the ESW office that can grow plants unattended for one month, and be monitored and controlled remotely. This quarter, we welcomed our new Co-Project Manager, Hannah Wilks.

On the software side, we continued updating the official AutoAquaponics website to improve its performance. To implement a live video stream of the system on the website, we developed end-to-end prototypes. We used a Raspberry Pi as a video streaming server and reverse proxies to connect the server to the internet and allow anyone to view the stream! We also added a dark mode to the website so users can now choose between light, dark, and system default. Lastly, our team started the Vertigrow controller model, developing a color–based cross-validation model to visually detect plant presence and height. This quarter was primarily focused on testing: taking a series of images and using the Canny edge-detection algorithm to improve our model. We also began writing logic to maintain optimal light intensity via mechanically adjusting growth light distance from our plants (more in mechanical design).

On the electronics side, we continued to work on improving the outlet box and sensor box, improving the wiring, and updating our pin maps for the system. We hope to grow the team next year with more students interested in electronics and helping to get our sensors back online!

Our biology team hosted a VERY successful harvest day, with healthy (and yummy) kale and basil. We made a kale salad and a caprese salad with this harvest and were able to share our bounty with a variety of Northwestern students! The team also introduced tomatoes to the system, which are successfully growing.

We were able to set up an order to be placed at the beginning of next year for additional grow cubes, a pinch point for increasing the number of plants in the system. We also had a resurgence of the worms that plagued our system last year, defying state-of-the-art ecological data about these worms, and unfortunately taking the lives of one of our cichlids. We were able to isolate the cichlid to the quarantine tank and prevent the parasites from affecting any other fish in the system.

As for mechanical design, we welcomed Aliza Campbell as our new team leader! We introduced more aeration into the bioreactor to improve water circulation and remove stagnation in the bead filters. We finalized the CAD and build of the shrimp cage and are ready to bring moss and shrimp into the system next quarter. We continued work on Vertigrow, an adjustable light above a grow bed to optimize the distance from UV light to plants from overhead, improving the growth of our system.

We continued our plans for two new grow beds: a hydroponic pipe-based growbed to further optimize our water use throughout the system, and a deeper grow bed to allow us to grow larger plants with deeper root systems. For the hydroponic system, we designed plant grow cups and novel water level height adjusters so that plants can grow in an ebb-and-flow system accommodating any system flow rate.

We also finally have a prototype for our new mechanical filtration box, which is now sealed and braced and is ready to be implemented. Lastly, we implemented a closed-loop feeding mechanism into the system, removing the need for external food sources. We have designed and prototyped a sustainable mealworm farming module, which separates mealworms, beetles, and eggs for processing into fish food.

Congratulations to Marcos Sanchez (our beloved PM), Spencer Huie, Lester Tai, Aymen Lamshael, and Lev Rosenberg for graduating! They will be sorely missed, but their contributions to this project live on!!

AutoAquaponics is headed by Kyan Shlipak () and Hannah Wilks (). You can find more information about AutoAquaponics on the ESW Project Database, where we post detailed quarterly blogs and an updated project summary. Keep an eye out for more news and feel free to reach out if you are interested in joining us!


NU - SmartTree: Spring 2024 Update

Added by Thomas Hoang 10 days ago

During Spring quarter, SmartTree achieved significant milestones! We mostly completed our base foundation structure, finalized our modifications to our solar panel mounting method, designed our benches, and made progress on our electrical system. We also displayed SmartTree at Northwestern’s Engineering Week project showcase!

To finish our bottom structure, we caulked the gaps between our wood panels. This was done for the aesthetic as well as waterproofing and protection of the electrical system from the environment. We also attached the lid pieces by mounting brackets through drilled holes. Once we finished all this, we were able to fit together the entire bottom assembly! All that’s left is mounting the two other flanges for the two other poles.

We also finished our modifications to our solar panel mounting method. We ended up 3D printing custom-designed brackets out of nylon to improve their strength and make them compatible with our specific solar panels.

On the design side, we designed our benches and began to design our tables. The benches will be simple wooden benches with two benches on two sides of SmartTree, resulting in a total of four benches. The tables will fold out using standard folding shelf brackets strong enough to support laptops and other objects placed on the tables by students. We also made some progress on our electrical system layout and are ready to test our solar panels!

Looking ahead, we’re excited to receive our SmartTree merch after applying for and receiving the MSAB grant from Northwestern! We will also be manufacturing our benches and tables in the Fall, as well as testing our solar panels and manufacturing other parts of the electrical system.

SmartTree is headed by PMs Thomas Hoang (), and Fiona Ireland (). Please don’t hesitate to reach out with questions or interest!

University of Guelph Hydroponics : June 2024 Update

Added by ESW Guelph about 2 months ago

In Fall of 2023 our Hydroponics team decided to upscale this project. After lots of negotiation the club was able to secure a greenhouse space on campus to build our own hydroponics system. We are no longer partnering with 10C however we have built a fully functioning system to grow Boston lettuce. The team is now hoping to partner with the University of Guelphs hospitality services. The project aims to provide fresh produce for hospitality services and the CSA Student FoodBank. Our current system has 10 troughs with the ability to grow 100 plants total. Nutrients get added into the water which cycles through the systems and reservoirs using a pump. Stay tuned for more updates on the new system we plan to build!

NU - Green Wall: Winter 2024 Update

Added by Cameron Moore 3 months ago

We have begun building ! In Winter Quarter we finalized most of our design and ordered materials allowing us to start building our first prototype! Most of our team has gotten trained in the shop to use the chop saw, table saw, and panel saw, along with all of the basic tools covered as freshmen in McCormick. As more materials continue to come in we will be refining our prototype design to present to facilities and get building outside!

We’d also like to introduce our new PM who will be stepping in for Cameron as he graduates this year. Meet Luke Simmons!

Stop by our Green Wall meeting times to get involved! We meet Sundays at 4 PM at Ford G201 and Fridays at 12 PM at the shop.

NU - SmartTree: Winter 2024 Update

Added by Thomas Hoang 3 months ago

During Winter quarter, SmartTree continued to construct the base of our structure, including mounting our poles and solar panels, as well as finishing staining and sealing all our wood pieces. We also took another look at our plan for the electrical system and made some modifications.

One of our main milestones of the quarter was finishing all the staining and sealing. Now all of our wood pieces for the base structure are ready to be assembled once we figure out the alignment for our flanges to hold the poles.

To complete the rest of the bottom structure, we needed to align our flanges so that the poles would be straight, fitting through the hole in each lid piece. To do this, we assembled one of the three modules that would hold the poles. We then placed the pole through the hole we made in the lid piece and marked where the flange needed to be located on our plastic base piece. Once we had these markings, we drilled and tapped holes through the thick and thin plastic that the flange sits on top of, securing it to the base of our structure. After assembling the module with the flange secured, we had officially completed one module. Knowing that our assembly method was sufficient, we ordered the other two poles and flanges to repeat the process for the other two modules in the Spring.

We also decided to look at our electrical system again since there were only ever preliminary calculations done. To help out with this, we had a PhD student with experience in photovoltaics help us run through some more complicated calculations. By the end of the discussion, we realized that for our goals of operation, we may need more solar panels or more batteries. However, we plan to talk with some professors and consult other resources in the Spring to have a more concrete plan moving forward with the electrical system.

Looking ahead, we plan to finish the entire SmartTree base structure in the Spring, along with solidifying the electrical system. We may also start working on the benches/chairs/stools as a side project, leaving us with an almost complete SmartTree by the end of the school year!

SmartTree is headed by PMs Thomas Hoang (), and Fiona Ireland (). You can find more information about SmartTree on the ESW Project Database, where we post detailed quarterly blogs and an updated project summary. Please don’t hesitate to reach out with questions or interest!

NU - AutoAquaponics: Winter 2024 Update

Added by Kyan Shlipak 3 months ago

This quarter, AutoAquaponics made headway towards our existing projects from last quarter and even began some exciting new projects! These new projects do not come for free, so we applied for and received another McCormick Student Advisory Board grant. Our sincerest thanks goes out to them for making this project possible!

We also saw a change in leadership this quarter, with Hannah Wilks taking over as co-project manager, joining Kyan Shlipak. Like last year, we were given the opportunity to give system tours for the Society of Women Engineers’ (SWE) Career Day for Girls event! At this event, middle schoolers in the Chicagoland area are given tours of Northwestern facilities and projects to inspire them to pursue careers in STEM. AutoAquaponics is one of these projects, and we are very grateful to be a part of this exciting day! Pictured below are some highlights of the system tours and a rundown of our project (shoutout to Hannah, Jack, Eduardo, and Talia for volunteering!):

Mechanical Design

Aliza and Kyan have conducted fluid analysis calculations to create calculations for the current system, provide the necessary construction parameters for new growbeds, and ensure sufficient water flow with future additional modifications. They programmatically solved these fluid problems in IPython using the Sympy and Numpy libraries with the Engineer’s Bernoulli equation and existing standardized PVC fluid parameters. Of the six identified parameters to solve for (listed below), 1-3 are complete and Aliza and Kyan are working on the next three. 1. Velocity out of the existing upper growbed 2. Velocity out of the existing lower growbed 3. Height needed for the new upper growbed 4. Height needed for the new lower growbed 5. Expected velocity out of the new upper growbed 6. Expected velocity out of the new lower growbed

Hannah and Calvin have worked to redesign the membrane filtration system to minimize eddies through the membrane pads and ensure that all water goes through the filters. The redesign increases the size of the membrane filter tank and increases the surface area of the membrane filters to improve filtration efficiency and quality. The redesign is currently in the process of being built. All walls have been cut on a laser cutter and all materials, from pipe fits to PVC pipes to filters, have been purchased. We also 3D printed a frame to hold the filter pads in place within the system. The next stages include putting the box together, sealing it with aquarium silicone sealant, and inserting the pipe gaskets.

Hannah and Samreen have designed a shrimp cage to introduce and safeguard shrimp in the system. The CAD is done and all parts have been printed and purchased, besides the live components (moss and shrimp).

David, Lily, Samreen, Kyan, and Jonathan have completed the design and partial construction of a PVC-grow bed, which would allow us to grow many small plants with shorter roots than our larger grow beds can support. The additional plant life will both improve our crop yields and improve the water quality and nutrient cycling of the aquaponic system, We are in the process of printing grates and purchasing plants, and we are prototyping a novel part to allow us to cycle the water level in the PVC pipe between high and low levels. We are scheduling a build day to begin full prototyping and assembly.

Helena has taken over the VertiGlow project, with the aim of automatically optimizing UV radiation intensity to fit plant needs by adjusting the position of grow lights above a grow bed. She has redesigned the system using two linear actuators to adjust the height and has designed a truss system to allow the system to hold four grow lights.

Santiago and Jonathan built a cart that will allow us to move buckets of water when we need to refill the aquaponic system. It will also be utilized to move materials from the shop to our office a floor below and between the ESW office and our new storage space in Tech.

Aliza, Seeley, and Kyan designed and 3D-printed attachments to the wall of the aquarium tanks to secure and modularize the acrylic walls lining the perimeter, allowing for safe and easy removal.

Jonathan, David, Lily, Calvin, and Kyan have planned the large-scale expansion of our current aquaponic system with the construction of a larger and deeper grow bed to allow for the introduction of larger and more complex plants with deeper root systems. We have purchased a stronger shelf to support the grow bed and associated plumbing, designed the CAD for the new system, and outlined a parts list for the system. We plan to grow more complex vegetables like tomatoes and peppers within this growbed, and hope to increase complexity to strawberries for next year if the vegetables succeed

Brady, Emi, and Kyan have begun designing a semi-automated mealworm farm that generates a food source for the fish. The design has two layers with adult beetles on the top and mealworms on the bottom, separated by a metal mesh. The beetles lay eggs, which fall through the mesh and hatch. We induce pupation by isolating the mealworms and transporting the adult beetles to the top layer to repeat the cycle. We used the old compost bin to make a house for mealworms, and worms are in and living. We will check in regularly next quarter to harvest them. We are currently researching methods by which the harvesting process can be automated and fed to the fish.

Software Much progress has been made on the software team, with new features added to the website for enhanced functionality. Once the sensor box is up and running, we will now be able to export a range of data for further analysis if ever needed. Alongside exporting data, the dashboard will also display data points as they are added from the sensor box.

Aside from data visualization, Software also worked on updating user account data. We created a Google Firebase collection to store user account data, meaning that multiple users could adjust control panel settings and have potential user-specific settings in the future. To display recent control panel activity, a prototype was created to display edits in tabular form.

On the ESP32 front, software created a prototype for using object recognition to determine plant height. The groundwork was laid for more improvements in the future, since plant recognition is spotty. To boost the effectiveness of the ESP32 plant recognition, we managed to port OpenCV libraries to run on a limited ESP32 system. This means that the ESP32 will have access to a computer vision library for optimal performance.


Unfortunately, our electronics team was still lacking members to complete projects. Progress was limited beyond soldering work on the sensor box. The outlet box code, which had hardcoded timers for the mechanical ball valves, was updated to have independent timers. A prototype for this code was developed by using an RTOS kernel to manage these timers, so the system is one step closer to being fully remote with soft-coded timers.


Our biological team has continued to work to ensure the maintained health of our plant and aquatic life by closely monitoring water quality and micronutrient levels.

This quarter, we had a very successful mint and kale harvest, with both flourishing in the system to an unprecedented degree. Our mint plants grew densely, completely filling half of our lower growbed and reaching the height limit. Our kale plants similarly grew to the maximum size of the lower and upper grow beds. We made fresh mint ice cream and kale salads with this quarter’s yields.

We also purchased and added some new Tetras. We quarantined them in a separate tank to ensure they wouldn’t introduce any harmful organisms or parasites into the system. Once it was safe, we added them to the aquarium, where they have lived healthily as the newest members of the AutoAquaponics system!

We are currently fixing a strange nutrient imbalance that has led to highly basic water. One of our working theories is that the decomposition of shedded snail shells has introduced additional calcium into the system. The bio and mechanical design teams are working on solutions.

Follow along to see the AutoAquaponic system and team continue to develop!

NU - SmartTree: Fall 2023 Update

Added by Thomas Hoang 6 months ago

During the Fall quarter, SmartTree continued to improve our design and consult with shop professionals and professors about the different options we had in terms of design and manufacturing methods.

To ensure our design can withstand Evanston’s strong winds, we met with a civil engineering professor to discuss any concerns about our design options. Based on his feedback, we decided to start by having a pole in each corner of the base assembly and have one solar panel mounted to each pole. Then if the structure ends up needing more support, we can add crossbeams between the poles or put sandbags on the flanges that connect the poles to the baseplate.

The first few weeks of the quarter were spent updating the overall CAD model. We split this into various teams: base piece remodeling, solar panel mounting, base piece connection, and electrical box. This helped our members gain experience in CAD, specifically Solidworks, and it gave us a more up to date reference that we can now use to help us figure out the best way to construct what hasn’t been built.

After making significant progress on the CAD models, we ordered a flange, a pole, and a solar panel mount. Even though the full design involves three of each, we purchased one of each for now to be able to assemble one full module and test its rigidity. Toward the end of the quarter, we continued staining and sealing our wood base pieces, picking up where we left off at the end of the Spring quarter. We also began drilling holes in the lid pieces for the poles to go through.

Looking forward, we plan to finish the top portion of SmartTree this quarter, leaving the benches and any remaining electrical projects for the Winter quarter, with a goal of having a fully operational SmartTree by the end of the school year!

NU - AutoAquaponics: Fall 2023 Update

AutoAquaponics Progress From Fall of 2023
Added by Marcos Sanchez 6 months ago

AutoAquaponics ended the year strong; we made meaningful progress towards a more efficient system, and we have much to look forward to in the coming year. To advance our goals, our team received a McCormick Student Advisory Board grant, and we are forever grateful for their support. We also saw new members join our team, Lily Li, Samreen Ibrahim, Adam Elsharkawi, and Lev Rosenburg;. Welcome to the fish bowl y’all!

To continue engagement with the Chicagoland community, our team gave a tour of the system to high schoolers participating in NU Society of Hispanic Professional Engineers’ High School Initiative Program! These high school students, primarily from minority and low-income backgrounds, come to Northwestern to discover what higher education in STEM has to offer. This includes our magnificent system! Special thanks to NU Society of Hispanic Professional Engineers for presenting this opportunity and to our lovely volunteers, Andre and Aliza, who came to help with the tour!


While we waited for membrane filter funding, our team got to work on some other improvements and exciting projects. The final design for our UV light filter was designed and installed in the system. Now, we should not have algae overgrowth.

Our members played around with the idea of a black soldier fly farm to provide a continuous source of food for the fish tank. The idea is to have flies lay their eggs in a container with compost that traps the fly larva and leverages inherent biological processes of the soldier fly life-cycle to automatically collect larvae once they mature. The larva will then be processed and fed to the fish.

Construction of the first few prototypes:

Unfortunately, Evanston got too cold for flies to be out, so our experiments could no longer continue. Check back in the spring when the weather is warm!

As a supplement to the black soldier fly farm, the plumbing team worked on a compost reactor to supply the black soldier farm with a steady stream of new food when the farm is up.

To evaluate the conversion of ammonia to useful nitrates and ensure fish and plant health, the plumbing team decided to add another dissolved oxygen(DO) sensor to the aquaponic system. Workflow has been automated and is now conducted by the biological team.

Hooking up the sensor to the sensor box for readings:

Experimenting with the readings from the DO sensor:

Because our team ran into issues with refilling the sump tank, we came up with a method to get water from the sink one room over (thanks to the NU Formula team for letting us use their room!) instead of carrying buckets of water from the bathrooms.

Algae also plagued the system over the summer, which was a cause for concern. Our plants were not growing optimally because of it, so we got to work. The Plumbing and Biology teams worked together to find a cause and adequate solution. The combination of too much light shining on water led to algae growing on grow cubes and on growbed grow media. For this reason, tinfoil was added to grow cubes and the U-siphon height was lowered so that water is not exposed to the growbed lights. Additionally, the plumbing team reworked solids lifting outlet and membrane filtration to improve fish waste collection in the system and stabilize ammonia and nitrate levels.


On the software side, we worked hard to improve internal workflow efficiency through a variety of means. We used GitHub releases and automated workflows to manage deployments, fixed a npm package dependency conflict by rewriting the typing animation feature, moved firebase security rules and indexes, and added script to run with emulators for backend resources for development purposes.

Alongside these improvements, the dashboard page and control panel now update in real time. This means that the dashboard will display data and the time updated when the system sends the data; the control panel no longer needs to refresh if other users change options. The dashboard page will no longer crash when hovering over a data point with non-existent data as well!

Control panel with no refresh button needed: Lev and Zach making updates to the website:


Due to a lack of personnel on the electronics team, the team paused work on the colorimeter and automatic fish feeder. Fortunately, the team managed to work on transferring the sensors to our newly developed PCB board now that we were able to get wires necessary to hook up the sensors. Next quarter, our sensors will be back online and will be able to monitor the system remotely again.

Our members also continued work on a window-cleaning robot from Spring and the outlet box code to improve its function. By the end of next quarter, we should have these tasks completed!


In terms of biology, we welcomed 6 new fish(tetraquads and guppies) to the tank after we set up our quarantine tank!

Along with new fish, our team aquascaped by adding decorations to the tank. Our fish now have more hiding spots and variety to enjoy.

Adjusting decorations in the tank:

The team attempted to grow kale, basil, mint, spinach, and radishes and successfully harvested said kale, basil, and mint. Unfortunately, the spinach and radishes did not grow in the system, but we have identified the grow cubes as the point of failure. In the future, we now know how to avoid these growth problems.

Smell ya later!

With a heavy heart, we said goodbye to Lester Tai as one of our project managers at the end of the quarter. From 2022, Lester worked tirelessly for the greater good of the club- first as a software team member and later as project manager. A Chicago native and one of the zaniest members of the team, he provided a reliable source of knowledge and labor for our electronics and software teams. We couldn’t have reached milestones without his enthusiastic support and will always remember his wide grin and clever jokes during meetings. Although he's stepping down, he'll back in the spring. It's more of a smell-ya-later than a goodbye for now, so you might see him in the spring quarter blog :) We wish him the best of luck at his Co-op and will miss him dearly!

With all that being said, we are proud of our progress this year and excited to see what the new year brings. Hope to see y’all there :)

NU - Green Wall: Fall 2023 Update

Added by Cameron Moore 6 months ago

Green Wall is almost ready to BUILD!!

This quarter marked a major design shift to a drip irrigation based system as opposed to a hydroponics based system. We made this decision largely to make our system more resilient to the extreme conditions faced in the winter. While this new design will make our system more robust, the switch has also led to its fair share of challenges such as rethinking the plumbing to still create a circular water flow with this new approach and increasing the structural integrity to support this increased weight of the new grow beds.

The new design still consists of grow beds stacked vertically on top of each other. To support the drip irrigation system and allow for additional storage, these grow beds will primarily be comprised of soil as opposed to our previous design of planter pods. To aid in reconstructability, the middle grow beds are designed to be identical.

This design has also incorporated some creative new design ideas. For instance, we will be covering the grow beds in panels of moss, which will naturally help insulate our system while adding an easy to maintain, year round source of green to the wall. This not only provides aesthetic benefits but also increases the wall’s ability to absorb carbon.

As we finish up our designs and start to order materials we will be getting to the shop. This quarter we will continue to narrow down our build location with the hopes of building right by Ford! This location will show off our Green Wall to all of campus and everyone driving down Sheridan.

Stop by our Green Wall meeting times to get involved! We meet Sundays at 4 PM and Tuesdays at 7 PM at Ford G201.

Solar Powered Community Fridge: University of Illinois Chicago Communal Fridge

The team & stakeholders consider the project completed. Tests of the solar array were done under conditions to mimic the weather of Chicago, materials were bought, & with the help of Love Fridge Chicago, the structure was built at Patchworks Farms.
Added by Joehdownie Joehdownie 12 months ago

The documents attached include the final Build Day report, our total budget and spending, and relevant photos throughout the entire process.


Also available in: Atom